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Abstract

Solar carports are an underutilized technology that of-
fers multiple potential community benefits, including clean
energy and shading for cars. We present a deep learn-
ing pipeline for quantifying the solar potential of parking
lots using satellite imagery. At the core of our approach
is a fine-tuned SegFormer model, a Transformer-based seg-
mentation architecture, trained to identify usable parking
block areas where solar canopies can be deployed. On
the APKLOT dataset, our model achieves a strong perfor-
mance in structured lot layouts, with a mean intersection
over Union (mIoU) of 85% on test images and a parking
block IoU of 79%, outperforming the previous baseline of
66%. We apply the model to nearly 17,000 satellite images
of parking lots in Los Angeles, estimating an annual so-
lar generation potential of 12.6 TWh. While this pipeline
offers a scalable pipeline for solar potential assessment,
further improvements could come from custom dataset de-
velopment, refined irradiance modeling, and incorporat-
ing obstructions like trees and buildings. Code is avail-
able at: https://github.com/Peiyu-Li-Tara/
CS231-final-project-code.

1. Introduction
Solar carports are a promising yet underutilized technol-

ogy, offering multiple community benefits, including clean
energy, dual use with electric vehicle charging, and shading
for cars. Solar carports are much less widespread compared
to rooftop solar, making them an interesting growth oppor-
tunity. However, solar carports are comparatively expen-
sive, due to the costs of permitting and the metal structures
used to hold up solar carport arrays. In this work, we de-
velop a learning pipeline to estimate the energy potential
of solar photovoltaics for parking lots, utilizing deep learn-
ing and computer vision applied to satellite imagery. We
demonstrate how this pipeline/model can be used to quan-
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tify the energy potential for solar carports in a given region,
illustrated here for Los Angeles, California.

This work comes at an opportune time in history for sev-
eral reasons: 1) intensifying global warming continues to
motivate the rapid expansion of clean energy, 2) satellite
imagery is now highly accessible, using publicly available
platforms such as OpenStreetMap (OSM) and Google Earth
Engine (GEE), 3) the continued advancement of artificial
intelligence – due to improvement in algorithms and access
to computation – means deep learning & computer vision
may be applied to satellite imagery to estimate solar carport
potential at scale.

1.1. Problem Statement

We will focus primarily on parking lot segmentation.
Specifically, we train a computer vision Transformer model
that - given a satellite image of a parking lot - can segment
the parking spot areas usable for solar carports. We then use
the segmentation model in a larger pipeline to estimate the
energy potential of solar carports in Los Angeles.

2. Related Work

In recent years, computer vision has been applied to
satellite imagery to produce estimates of solar rooftop po-
tential. Rooftops are an analogous problem to parking lots,
providing a good reference point for our work. We have
provided a non-exhaustive list of reference papers that esti-
mate solar rooftop potential ([1], [2], [3], [4], [5]). To our
knowledge, frameworks developed for rooftop solar have
yet to be applied to parking lots.

Reviewing the literature, the following features are typi-
cally considered when estimating solar rooftop potential us-
ing computer vision, and can be considered for parking lots
as well: 1) available area, considering both the perimeter
and inner obstructions, 2) orientation of the site to the sun -
south-facing is preferred, 3) shading from nearby buildings
and trees, and 4) favorable local weather conditions such
as strong solar irradiance. Several of these issues have been
studied in previous work, most notably in [1], with issues 1-
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3 being addressed using computer vision applied to satellite
imagery.

A challenge unique to solar carports is parking spot seg-
mentation, of relevance because solar carports are typically
built where cars are parked [6]. Parking spot segmentation
is a crucial first step in estimating solar carports because
it is not the size, orientation, and obstruction of entire lots
that are of practical importance, but rather that of individual
parking spaces, motivating an ability to automatically locate
parking blocks and quantify the profitability of each block
independently. Given our focus on parking block segmen-
tation using computer vision, the impact of orientation and
shading from obstructions on solar potential is ignored for
now, with this being a subject for future research.

Parking block segmentation has been attempted in prior
studies for various applications, such as security [7] and
predicting earnings [8], although studies often utilize
surveillance and/or aerial imagery. Hurst-Tarrab et al., how-
ever, used satellite imagery for the task of parking block
segmentation and released a hand-annotated dataset called
APKLOT for this purpose [7]. Along with the release of
said dataset, Hurst-Tarrab et al. utilized a convolutional
neural network (CNN) based architecture pretrained on Im-
ageNet to achieve 0.658 parking block IoU on the APKLOT
test set. A contribution of our work is testing how modern
Transformer vision models perform on the parking block
segmentation task, a promising approach given progress
in Transformer-based vision models since the original AP-
KLOT publication in 2020.

3. Dataset
APKLOT is a satellite imagery dataset developed for the

task of parking block segmentation [7]. The dataset was
created for a much different purpose: to build models that
could supplement surveillance footage for enhanced park-
ing lot security. However, the dataset fits our task reason-
ably well. It includes high-resolution images of parking lots
from diverse geographic regions, with annotated polygon
masks over contiguous parking regions or blocks (not indi-
vidual spots).

Figure 1: Examples from APKLOT

The original dataset comprises 400 satellite images in
PNG format, collected at a zoom level of 14 cm/pixel from

OSM. Each image is accompanied by a .json annotation file
in Pascal VOC format. Only images of outdoor parking lots
captured under clear daylight conditions and with standard
demarcation are included. Images with significant occlu-
sions, poor lighting, or non-standard parking layouts are ex-
cluded.

Given the small number of annotations (400), we applied
data augmentation strategies to each image and polygon
mask. We follow the same protocol as described by Hurst-
Tarrab et al [7], who employ photometric and geometric
transformations designed to simulate real-world satellite
image variability. Augmentations were applied consistently
to both images and annotations via the imgaug library, pre-
serving mask integrity post-transformation. These augmen-
tations were found to enhance the generalizability and ro-
bustness of the segmentation model [7].

• Random Cropping: Up to 50 pixels from the image
borders, simulating satellite view shifts and framing
variation.

• Flipping: Horizontal and vertical flips (each with 50%
probability), ensuring symmetry robustness.

• Rotation: Uniform random rotation between −45◦

and +45◦, addressing variations in parking lot orien-
tation relative to roads.

The result of the augmentations is a relatively large
dataset: 40, 000 augmented samples derived from the orig-
inal 400 training images, totaling 80, 000 images in total
(one input image and one mask for each sample), and 80
GB. Given the size of the data, it was necessary to create
our own custom Hugging Face dataset. The dataset is avail-
able at jneutel/APKLOT/CS231N. While Hurst-Tarrab
et al [7] provide original annotations and a recipe for aug-
mentation, they did not provide the full augmented dataset,
and thus this is a contribution of our work.

The SegFormer model includes automatic preprocessing
applied to each image, including resizing the input to 512×
512 pixels using rescaling and padding as needed, as well
as applying layer normalization to each image.

4. Methods
4.1. Larger Pipeline for Solar Estimation

First, we describe the larger pipeline for solar estimation.

1. Train a computer vision model that, given a satel-
lite image of a parking lot, can automatically segment
parking blocks.

2. Using OSM, identify the longitude and latitude coordi-
nates of bounding boxes for all tagged parking lots in
the region of interest. The perimeter areas of most ma-
jor parking lots in populous cities are tagged in OSM.
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3. Using GEE, programmatically pull satellite images for
all parking lots identified in Step 2.

4. Apply the computer vision model to create segmenta-
tion masks of parking blocks for candidates identified
in Step 3.

5. Cross-reference with solar irradiance data from the Na-
tional Renewable Energy Laboratory (NREL) [9] to
estimate the solar potential of each parking lot using
the equations below.

Solar Potential [kW ]C = Panel Efficiency

· (Solar Irradiance [kW/m2])C · (
∑
b∈C

Areab[m2]) (1)

where∑
b∈C

Areab[m2] =
Square meters[m2]

Pixel
· (
∑
p∈C

maskC) (2)

Here, the solar irradiance of a candidate parking lot C
is estimated by plugging in its longitude and latitude coor-
dinates into NREL’s Python Web API [9]. The area avail-
able for solar panels is the sum of the areas of each park-
ing block, which is equal to the pixel-wise sum of parking
block segmentation masks multiplied by a conversion fac-
tor of square meters per pixel. Lots are pulled from GEE at
the same scale (scale = 0.6), meaning the conversion from
pixels to area is the same for all images at inference time
(0.36m2/ pixel).

4.2. SegFormer Model

Given the small size of the APKLOT dataset, we build
upon an existing model called SegFormer that was devel-
oped by NVIDIA and pre-trained on a large dataset, fine-
tuning the model on our domain-specific data. Code for
fine-tuning was developed by us, but with aid from [10].

SegFormer comes in six variants (MiT-B0 to MiT-B5),
each scaling in depth, width, and number of attention heads.
MiT-B0 is the smallest and fastest, optimized for real-time
use, while MiT-B5 is the heaviest in compute and pa-
rameters yet most accurate. In benchmark comparisons,
SegFormer outperforms previous work, such as traditional
CNN-based models and Transformer-based models, in both
accuracy and computational efficiency [8]. SegFormer in
large part owes its improved performance to a new en-
coder architecture called a Mix Transformer (MiT), which
included several key innovations:

• Unlike prior Vision Transformer (ViT) approaches
that only generate single-scale, low-resolution feature
maps, MiTs provide high-resolution feature maps at
four spatial resolutions. This hierarchy allows the
model to retain fine-grained spatial information in

early layers while capturing a global context in deeper
layers. This approach mimics the effective receptive
field (ERF) of CNNs and improves localization in seg-
mentation tasks [8].

• Rather than using non-overlapping patch embeddings
commonly used in ViTs, SegFormer employs overlap-
ping patch merging, where small convolution kernels
are used to embed patches. This overlap preserves the
local neighborhood of information, which is impor-
tant for precise segmentation boundaries such as those
found between parking spots [8].

• To reduce the quadratic computational complexity of
vanilla self-attention, SegFormer introduces sequence
reduction attention. This technique reduces the spa-
tial token count by applying a learned projection to the
key/value tensors. Each encoder stage uses a differ-
ent reduction ratio, enabling scalable attention while
maintaining accuracy [8].

• Instead of relying on positional embeddings that re-
quire interpolation when input resolutions change,
SegFormer introduces Mix-FNN, a combination of a
3× 3 depthwise convolution and a standard multilayer
perceptron (MLP) layer. Mix-FNN injects location in-
formation implicitly through padding, ensuring robust
performance even when test image resolutions differ
from training [8].

In addition to changes to the Transformer encoder ar-
chitecture, SegFormer introduced a simple but effective de-
coder architecture that comprised of solely multilayer per-
ceptrons (MLPs). This is in contrast to traditional segmen-
tation models that use heavy decoders. The SegFormer de-
coder fuses the multi-scale feature maps from the MiT en-
coder by first aligning their channel dimensions through lin-
ear projections, then upsampling each to a common spatial
resolution, and finally concatenating and projecting them
into the output segmentation mask. The decoder design is
simple but takes advantage of the rich, multi-level features
and large ERF provided by the MiT encoder [8].

4.3. Evaluation Metric

We use intersection over union (IoU) as our primary
evaluation metric, as done in the APKLOT paper for which
we compare (our baseline), as well as other solar rooftop
potential studies [1] and the SegFormer release paper [8].
IoU measures the fraction of overlap between the predicted
and ground-truth segmentation regions [7]. We calculate
IoU scores for the parking block and background areas sep-
arately, with the mean of these two scores referred to as the
mIoU.

IoUClass =
True Positive (# Pixels)

Prediction Area ∪ Ground Truth Area (# Pixels)
(3)
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mIoU =
IoUParking + IoUBackground

2
(4)

4.4. Baseline

We compare our performance to the original APKLOT
publication, which used a CNN-based architecture pre-
trained on ImageNet [7]. Hurst-Tarrab et al. achieves a
65.8% parking block IoU on the test set. A contribution of
our work is testing how modern Transformer vision mod-
els perform on the parking block segmentation task, a po-
tentially promising approach given the progress of Trans-
former vision models since the original APKLOT publica-
tion in 2020.

5. Experiments and Hyperparameter Selection

Experiments were conducted to set several hyperparam-
eters, including the learning rate, the number of augmented
images to use, and the number of training epochs. During
experimentation, models were trained and evaluated using
a 95%/5% split of the data. All models were trained on
an A10 chip with 24 GB of VRAM, 30 vCPUs, 200 GB of
RAM, and 1.4 TB of SSD storage using Lambda Labs.

First, we set the learning rate schedule. We performed
separate linear searches on the learning rate and warmup
steps and found that the prior had a noticeable impact on
performance, while the latter had a small impact. This stage
of experimentation was conducted using one training epoch
and 25% of the training data, or a total of 10, 000 images
(9, 500 images for training and 500 images for evaluation).
As shown in Figure 2, a learning rate of 5e−4 results in the
best performance and thus is used moving forward.

Figure 2: Results of learning-rate experiments

After selecting a reasonable learning rate, we scaled the
size of the training data from 25% of the augmented dataset
to 50%, 75%, and finally 100%. These tests helped en-
sure that hyperparameters selected using 25% of the data
still performed well with additional data, particularly test-
ing whether SegFormer began to overfit due to recognizing
augmentations. As can be seen in Figure 3, additional data
only improved performance on the evaluation set, and so

moving forward we include all augmentations for a total of
40, 000 images.

Figure 3: Results of data-scaling experiments

Finally, after fixing the learning rate schedule and the
number of augmented images, we increased the number of
training epochs to determine how many were needed before
performance plateaued. As shown in Figure 4, performance
stops improving at five epochs, which is used moving for-
ward.

Figure 4: Results of epoch experiments

The final hyperparameters selected are summarized in
Table 1. Note that we also tested the impact of weight decay,
but its effect was small. This is likely because weight decay
only affects the decoder, which has significantly fewer pa-
rameters than the encoder (frozen from SegFormer). Train-
ing and evaluation batch size were chosen to accommodate
computational constraints. Finally, SegFormer model MiT
B0 was chosen because performance was acceptable even
with the lightweight model, however future work could ex-
plore the benefits of using larger models MiT B1-B5. The
model outlined here scored a mIoU of 93.1% and parking
block IoU of 90.5% when evaluated on the evaluation set.

6. Results and Discussion
6.1. Computer Vision Task

In Table 2, we compare the performance of our pre-
ferred SegFormer model with the performance reported in
the original APKLOT publication, evaluated on the AP-
KLOT test-set (a holdout of 100 images). As can be seen,
our fine-tuned SegFormer model outperforms the APKLOT
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Hyperparameter Choice

SegFormer Model MiT B0

Number of Images
40,000

(39,600 augmentations)
Learning Rate 5e-4

Learning Schedule
Linear warmup

10% of training steps
Number of Training Epochs 5

Weight Decay 0.01
Training Batch Size 8

Evaluation Batch Size 2

Table 1: Hyperparameters used in the final model.

Figure 5: Top 3 well-performing segmentation results based
on mIoU. From left to right: input satellite image, ground
truth parking block mask, and the predicted mask from our
best model.

model by about 12% on parking block IoU. We attribute
improved performance to a change in the underlying model
architecture, with Hurst-Tarrab et al. using a CNN-based
architecture and us using a Transformer-based architecture.

Note that our fine-tuned SegFormer model performs
worse on the test set (parking block IoU of 0.790 and mIoU
of 0.856) than it does on the evaluation set (parking block
IoU of 0.905 and mIoU of 0.930). This is likely because the
evaluation set is made up of augmented images, meaning
there may be examples in the evaluation set that are similar
to examples seen in the training set. By comparison, the test

Figure 6: Bottom 3 poor-performing segmentation results
based on mIoU. From left to right: input satellite image,
ground truth parking block mask, and the predicted mask
from our best model.

set is made up of entirely unseen examples.
Given the discrepancy in performance on the evaluation

set and the test set, we ran an additional experiment where
we trained the model on only the 400 original APKLOT
images. As can be seen in Table 2, the SegFormer model
performs surprisingly well in this case, with similar per-
formance to the original APKLOT publication, and with
about 10% worse performance compared to training Seg-
Former on the full augmented dataset. That performance is
reasonable, even with relatively few examples, and shows
the power of pre-training on very large datasets. This also
demonstrates the ability of deep neural networks to trans-
fer knowledge from one task to another by extracting key
features of images. Overall, these results suggest that aug-
mentations, while helpful, can only bring us so far in the
parking block segmentation task. In addition, results moti-
vate hand-labeling of additional data, as even a few hundred
additional images may improve performance significantly.

Looking at some qualitative examples from the test set
(Figure 5), our model demonstrates strong performance on
images that feature clear, orthogonal parking layouts with
high-contrast markings and minimal occlusion. In such
cases, the regular geometry and visual consistency closely
match patterns present in the training data, enabling the
model to segment parking lots effectively.

In contrast, the model struggles in scenes with occlu-
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Model Parking Block IoU Background IoU mIoU

APKLOT CNN Baseline 0.667 Not Reported Not Reported
Finetuned SegFormer on Augmented Dataset (40,000 images) 0.790 0.922 0.856

Finetuned SegFormer on Non-Augmented Dataset (400 images) 0.686 0.884 0.785

Table 2: Performance of our model compared to APKLOT baseline [7].

sions, irregular geometries, or underrepresented patterns.
In the top right example in Figure 6, for example, parking
lines are obscured by large tree shadows, irregular parking
places, and overlapping tree branches, leading to both false
negatives (missed parking place) and false positives (mis-
classified background). In the middle example of Figure
6, heterogeneous parking layouts differ significantly from
the training distribution, while in the bottom left example,
parking lines are curved, sparse, and difficult to identify, re-
sulting in substantial irregularities in predicted mask shape.
Overall, these failures demonstrate the following limitations
of the current model: 1) sensitivity to occlusion and shad-
owing from obstructions (trees, buildings); 2) difficulty with
curved, rotated, or non-grid-aligned layouts, and 3) lack of
robustness to scenes with sparse or subtle parking lines. The
reason for such limitations may be due to a lack of occluded
and irregular examples in the training dataset, since a large
portion of our training data are relatively uniform or grid-
aligned structures, leading to inductive bias in our model to
favor axis-aligned structures.

6.2. Estimating Solar Potential

After finalizing the parking block segmentation model,
we applied it to estimate the solar potential of all parking
lots tagged in OSM for Los Angeles, California. There were
a total of 16,941 inference images.

Qualitatively analyzing the performance of the fine-
tuned SegFormer model on the Los Angeles inference data,
the model generally does well on most parking lots, with
many examples looking like Figure 7a, where the model
successfully segments the parking blocks. That said, we see
worse performance in cases where the inference data looks
markedly different to data seen in the APKLOT dataset.

As a common example, lots in the APKLOT dataset are
typically of a similar size, and parking lots are all reason-
ably visible/clear. In our inference dataset, all images are
necessarily at the same scale, so solar potential can be esti-
mated downstream. As consequence, some images are very
large (for large lots) and some images are very small (for
small lots). SegFormer processes these images as needed
to meet the 512 × 512 input specification, zooming out for
large images and padding smaller ones. The end result is the
model encounters input variations that differ from the train-
ing distribution, i.e. lots that are very zoomed out (large

lots) or lots that have excessive padding (small lots). Exam-
ple segmentations for very large and small lots are shown in
Figures 7b and 7c respectively. Another example occasion-
ally seen in the inference dataset but not in the APKLOT
dataset is parking lots with unclear parking space demarca-
tion lines (Figure 7d), an additional case the model struggles
with. As seen in Figures 7b-7d , when the model performs
poorly on the inference dataset, it typically underestimates
the correct parking block area.

(a) Successful segmentation

(b) Large parking lot

(c) Small parking lot

(d) Unclear parking lines

Figure 7: Performance of fine-tuned SegFormer model on a
few examples

Poor performance on large lots is particularly problem-
atic, because we are most interested in large lots that likely
have the highest solar potential. In future work, it may be
possible to resolve this issue by splitting large lots into a
collection of smaller images that are separately processed
by the SegFormer model but then grouped together for the
solar potential estimation. Poor performance on small lots
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is not particularly critical, because very small lots should
likely be filtered out of consideration for solar carports al-
together. These issues are overall a result of a mismatch be-
tween the APKLOT dataset and our end application in cer-
tain edge cases, motivating development of a custom dataset
that is tailored specifically to the task of estimating the en-
ergy potential of solar carports.

Summing all parking block areas and dividing by the to-
tal area of all parking lots, parking blocks are estimated to
make up 15% of parking area in Los Angeles. Estimating
this same fraction for each parking lot and then taking the
mean across lots, parking blocks take up an average of 17%
of area, with a standard deviation of 9%. These results are
lower than those reported by Rudge et al. [6], who estimated
this fraction by hand labeling 100 lots in Connecticut, find-
ing that parking blocks make up 35% of parking lots. We
understand the discrepancy in results to be due to the Seg-
Former model underestimating parking block areas for very
large lots.

The variability in the fraction of area made up by parking
blocks (9% standard deviation) is quite notable, with this
result implying that the fraction of area made up by parking
blocks can be quite variable between lots. This variability
motivates the use of computer vision segmentation models
to estimate the fraction of usable area uniquely for each lot,
as done here, rather than using a general assumption that is
applied to all lots, as done by Rudge et al. [6].

Estimating the solar potential for all parking lots using
Equations 1-2, we find that Los Angeles alone has 12.6
TWh/year of solar carport potential. This is equivalent to
about 4% of total California electricity usage [11]. It is also
enough energy to fully charge a Tesla Model 3 Long Range
about 130 million times [12], or enough to power about 2
million average California homes for a year [13]. These
results are possibly an underestimate, given the model cur-
rently undercounts parking block areas for the largest lots.
On the other hand, these results do not consider the impact
of orientation on solar irradiance, as the NREL API assumes
maximum solar irradiance at all time steps (i.e., it assumes
solar panels are placed on a dual-axis tracker that can track
the sun on its path through the sky). Overall, these results
suggest large impact potential for solar carports, and at least
motivate further work on this subject to make these estima-
tions more precise.

7. Future Work

7.1. Larger Model

While the MiT B0 model used here performs well on
the APKLOT test set, there may be additional room for
improvement by using larger SegFormer models MiT B1-
B5. Having additional parameters may make the model
more expressive and thus performant, however, it might also

cause the model to overfit to training data. Ultimately, the
optimal model checkpoint should be determined through
experimentation, as in Section 5.

7.2. Custom Dataset

APKLOT was designed for parking block segmentation,
not necessarily for solar carport potential estimation. As
such, the APKLOT dataset does not include certain edge
cases that may be encountered when pulling images from
OSM and GEE for solar potential estimation. For exam-
ple, when estimating solar potential, images must be pulled
at the same scale (meter per pixel), which may result in
images being very large or small for very large and small
lots. In addition, there may be cases where parking lots are
pulled without clear parking space line demarcations, which
should be accounted for in a solar-carport-specific dataset.
Finally, Hurst-Tarrab et al. occasionally segments parking
blocks even when there is a clear obstruction (e.g., a tree),
whereas a solar-carport-specific dataset may not segment
in this case [7]. Given proof of concept on the APKLOT
dataset, a reasonable next step would be to hand-label a
dataset catered specifically to the task of solar carport en-
ergy potential estimation. In addition to catering the dataset
toward our specific use case, it would be preferable to ex-
pand the size of the base dataset from 400 images, to reduce
reliance on augmentation.

7.3. Orientation

Above, we use NREL’s Average Direct Normal Irradi-
ance [9], which takes as input the longitude and latitude
coordinates of a parking lot and returns the average daily ir-
radiance (mean over hours and days of the year), assuming
the solar panels are able to track the sun throughout the day.
Solar tracking is only possible using a dual-axis tracker, a
relatively expensive option. In all likelihood, solar carport
panels would be stationary, and thus their orientation would
need to be taken into account.

Previous work estimating solar rooftop potential has
used computer vision to determine the orientation of seg-
mentation areas [1]. However, given that GEE images are
pulled north-facing, it may be possible to determine the ori-
entation of segmentations by running Principal Component
Analysis on predicted masks and then calculating the angle
of each parking block relative to due North. Once orienta-
tion is determined, solar irradiance can be estimated more
accurately using Eq. 5-7 below [1].

Solar Irradiance [kW/m2] = Ibeam + Idiffuse (5)

Ibeam = Direct Normal Irradiance
· (cos(α) · sin(β) · cos(ψ − θ)

sin(α) · cos(β))
(6)
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Idiffuse = Diffuse Horizontal Irradiance · 1 + cos(β)

2
(7)

Solar irradiance consists of two components: direct
irradiance (Ibeam) and diffuse irradiance from the sky
(Idiffuse) [1]. Ibeam is affected by the solar elevation an-
gle (α), surface tilt (β), solar azimuth angle (ψ), and sur-
face azimuth angle (θ), whereas Idiffuse is only affected
by tilt. Here, solar elevation and azimuth angle (α and ψ)
are dependent on location (longitude/latitude) and the time
of day, surface tilt (β) is commonly 5°−10°, and the sur-
face azimuth angle (θ) is the orientation from due North.
In other words, given the longitude latitude coordinates of
a parking lot, all of these parameters are known except for
the surface azimuth angle (θ), which is defined by the ori-
entation angle of each parking block.

7.4. Obstructions

In addition to orientation, shading from obstructions
such as trees and buildings should be considered to make
solar potential estimates more accurate. Computer vision
models can be layered on top of the segmentation model
shown here to identify building and tree obstructions that
can cast shade and thus reduce solar output. The level of
detail may vary, from simply identifying trees or buildings
that may be problematic, to developing full hourly shad-
ing models that incorporate an understanding of obstruction
size, height, angle, and distance to parking blocks.

7.5. Scaling

Due to time and storage constraints we limited inference
to Los Angeles, California. Future work could include scal-
ing this same process to other major cities in California and
across the US.

8. Conclusion
In this work, we demonstrate proof-of-concept for a

learning and modeling pipeline that can estimate the solar
potential of parking lots using satellite imagery and com-
puter vision. The computer vision task was as follows:
given a satellite image of a parking lot, segment the park-
ing blocks (continuous regions where cars can park). To
do so, we fine tune SegFormer, a pre-trained segmentation
model developed by NVIDIA with a Transformer architec-
ture [8]. We achieve a test-set mIoU of 0.856 and parking
block IoU of 0.790, compared to the previously published
APKLOT baseline that scored a parking-block IoU of 0.667
[7]. We then applied our fine-tuned SegFormer model to
nearly 17, 000 satellite images of parking lots in Los Ange-
les pulled using GEE and OSM APIs, and estimated poten-
tial for 12.6 TWh/year of solar production. While in this

work we demonstrate a larger modeling pipeline and es-
tablish motivation for continued research in this area, there
are several ways the solar potential estimation could be im-
proved, most notably: 1) developing a custom and larger
dataset tailored specifically for the task of solar carport po-
tential estimation, 2) updating solar irradiance estimations
to account for orientation, and 3) developing a separate
computer vision model that can account for shading from
obstructions like trees and buildings.

9. Contributions
Peiyu developed and performed data augmentation, cre-

ated visualization and hyperparameter experiment code, ran
training experiments, and tested the model on the AP-
KLOT test dataset, producing relevant figures. Josh de-
fined the project scope and designed the overall model
pipeline, helped develop OSM and GEE code to pull in-
ference images, established our first working SegFormer
model, and ran some fine-tuning experiments. Renee aided
in the pipeline design, researched and chose SegFormer as
our base pre-trained model, ran training experiments, lead
development and execution of steps 3-5 of the pipeline, pro-
duced experiment figures and model tables, and trained the
model on the original APKLOT training dataset (400 im-
ages). All project partners contributed significantly to the
writing the final report, with Josh leading Introduction, Re-
lated Work, and discussion of Results, Peiyu leading sec-
tions detailing the SegFormer architecture and APKLOT
dataset, and Renee editing and formatting all sections.

Libraries Used:

Library Version

Numpy [14] 1.26.4
Pillow [15] 11.2.1
tqdm [16] 4.67.1

PyTorch [17] 2.7.0+cu126
transformers [18] 4.51.3

datasets [19] 3.6.0
evaluate [20] 0.4.3

torchmetrics [21] 1.7.1
imgaug [22] 0.4.0

matplotlib [23] 3.10.3
pandas [24] 2.2.3

scikit-learn [25] 1.6.1
seaborn [26] 0.13.2
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